The normalized curve shortening flow and homothetic solutions
نویسندگان
چکیده
منابع مشابه
Curve Shortening Flow in a Riemannian Manifold
In this paper, we systemally study the long time behavior of the curve shortening flow in a closed or non-compact complete locally Riemannian symmetric manifold. Assume that we have a global flow. Then we can exhibit a a limit for the global behavior of the flow. In particular, we show the following results. 1). Let M be a compact locally symmetric space. If the curve shortening flow exists for...
متن کاملThe Blow up Analysis of Solutions of the General Curve Shortening Flow
In this paper, a detailed asymptotic behavior of the closed curves is presented when they contract to a point in finite time under the general curve shortening flow.
متن کاملGrid peeling and the affine curve-shortening flow
In this paper we study an experimentally-observed connection between two seemingly unrelated processes, one from computational geometry and the other from differential geometry. The first one (which we call grid peeling) is the convex-layer decomposition of subsets G ⊂ Z of the integer grid, previously studied for the particular case G = {1, . . . ,m} by Har-Peled and Lidický (2013). The second...
متن کاملBlow-up rates for the general curve shortening flow
The blow-up rates of derivatives of the curvature function will be presented when the closed curves contract to a point in finite time under the general curve shortening flow. In particular, this generalizes a theorem of M.E. Gage and R.S. Hamilton about mean curvature flow in R2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1986
ISSN: 0022-040X
DOI: 10.4310/jdg/1214440025